Probe threshold and probe trivially perfect graphs

نویسندگان

  • Daniel Bayer
  • Van Bang Le
  • H. N. de Ridder
چکیده

7 An undirected graph G = (V,E) is a probe C graph if its vertex set can be partitioned 8 into two sets, N (non-probes) and P (probes) where N is independent and there 9 exists E′ ⊆ N × N such that G′ = (V,E ∪ E′) is a C graph. In this article we 10 investigate probe threshold and probe trivially perfect graphs and characterise them 11 in terms of certain 2-Sat formulas and in other ways. For the case when the partition 12 into probes and non-probes is given, we give characterisations by forbidden induced 13 subgraphs, linear recognition algorithms (in the case of probe threshold graphs it is 14 based on the degree sequence of the graph), and linear algorithms to find a set E′ 15 of minimum size. Furthermore, we give linear time recognition algorithms for both 16 classes and a characterisation by forbidden subgraphs for probe threshold graphs 17 when the partition (P,N) is not given. 18

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two characterizations of chain partitioned probe graphs

Chain graphs are exactly bipartite graphs without induced 2K 2 (a graph with four vertices and two disjoint edges). A graph G = (V, E) with a given independent set S ⊆ V (a set of pairwise non-adjacent vertices) is said to be a chain partitioned probe graph if G can be extended to a chain graph by adding edges between certain vertices in S. In this note we give two characterizations for chain p...

متن کامل

A new characterization of trivially perfect graphs

A graph G is trivially perfect if for every induced subgraph the cardinality of the largest set of pairwise nonadjacent vertices (the stability number) α(G) equals the number of (maximal) cliques m(G). We characterize the trivially perfect graphs in terms of vertex-coloring and we extend some definitions to infinite graphs.

متن کامل

Edge Contractions in Subclasses of Chordal Graphs

Modifying a given graph to obtain another graph is a wellstudied problem with applications in many fields. Given two input graphs G and H, the Contractibility problem is to decide whether H can be obtained from G by a sequence of edge contractions. This problem is known to be NP-complete already when both input graphs are trees of bounded diameter. We prove that Contractibility can be solved in...

متن کامل

Enumerative aspects of certain subclasses of perfect graphs

We investigate the enumerative aspects of various classes of perfect graphs like cographs, split graphs, trivially perfect graphs and threshold graphs. For subclasses of permutation graphs like cographs and threshold graphs we also determine the number of permutations of f1; 2; : : : ; ng such that the permutation graph G] belongs to that class. We establish an interesting bijec-tion between pe...

متن کامل

Computing square roots of trivially perfect and threshold graphs

A graph H is a square root of a graph G if two vertices are adjacent in G if and only if they are at distance one or two in H . Computing a square root of a given graph is NP-hard, even when the input graph is restricted to be chordal. In this paper, we show that computing a square root can be done in linear time for a well-known subclass of chordal graphs, the class of trivially perfect graphs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 410  شماره 

صفحات  -

تاریخ انتشار 2009